загрузка...

Темная материя и антиматерия


В зпіой главе...
Зачем нужна темная материя
Природа темной материи
Поиск таинственной материи
Что такое антиматерия
^Г везды и галактики — это сияющие россыпи в ночном небе, но эти великолепные брил- лианты составляют всего лишь незначительную долю всей материи космоса. Оказывается, во Вселенной намного больше материи, которую мы не видим.
В этой главе вы узнаете, что такое темная материя, почему астрономы уверены в ее существовании и какие эксперименты могут пролить свет на природу этого таинственного, невидимого вещества. Я расскажу также еще об одном экзотическом типе материи во Вселенной — антиматерии. Да, антиматерия существует в реальном мире, а не только в фантастических книгах. Причем реальность не менее поразительна, чем фантастические книги, телевизионные шоу и кинофильмы на эту тему.
Ліеліная, Matneftusi: tno, ч,*по coequnsiefti іалакиіики
Уже в 1930-х годах астрономы обнаружили признаки того, что по меньшей мере 90% массы Вселенной не излучает света. Этот невидимый материал, называемый темной материей (dark matter), считается тем гравитационным клеем, который не дает звездам стремительно вращающейся галактики, как и галактикам скопления, разлететься в разные стороны. Похоже, что темная материя также сыграла решающую роль в том, что Вселенная стала такой, какой мы ее знаем сегодня, — паутиной из невероятно длинных сверхскоплений галактик, разделяемых гигантскими пустотами (см. главу 12). И, быть может, именно темная материя определяет судьбу Вселенной.
Что скрывается за недостатком массы
Первый намек на то, что во Вселенной есть темная материя, появился в 1933 году. Изучая движения галактик внутри большого скопления галактик в созвездии Волос Вероники, астроном Фриц Цвикки из Калифорнийского технологического института обнаружил, что некоторые галактики движутся с необычно высокой скоростью. И в самом деле, эти галактики из созвездия Волос Вероники двигались так быстро, что по всем законам физики выходило: все видимые звезды и газ в скоплении не сумели бы обеспечить такую связь между галактиками, чтобы те не разлетелись в разные стороны. И, тем не менее, со скоплением ничего не происходило, оно оставалось прежним.
Отсюда Цвикки заключил, что в созвездии Волос Вероники может существовать какая-то невидимая материя, восполняющая недостаток гравитации. Но не менее удивительным, чем данный вывод, оказалось то, что в течение нескольких последующих десятилетий о темной материи не было никаких сенсационных статей в прессе. Многие астрономы считали, что, поскольку движение галактик изучено очень подробно, для "изобретения" невидимой материи нет никаких оснований. Но в 1970-х годах появились более убедительные доказательства существования темной материи. Выходило, что она есть не только в звездных скоплениях, но и в отдельных галактиках. В следующих разделах приведены основные аргументы в пользу существования темной материи.
Внешние и внутренние звезды движутся одинаково быстро
Вера Рубина и Кент Форд из Института Карнеги в Вашингтоне, округ Колумбия, изучали движение звезд в сотнях спиральных галактик и внезапно получили результат, казалось бы, противоречащий традиционным законам физики. Спиральная галактика напоминает плоскую яичницу, причем большая часть ее массы, по всей видимости, сосредоточена в "желтке"; астрономы называют это балдж (см. главу 12). Полученные изображения показывают, что видимая масса спирали быстро уменьшается с увеличением расстояния от балджа.
Ученые, естественно, ожидали, что звезды в спиральной галактике вращаются вокруг этого массивного центра так же, как планеты в нашей Солнечной системе вращаются вокруг Солнца. По открытому Ньютоном закону всемирного тяготения, внешние планеты, такие как Плутон и Нептун, вращаются вокруг Солнца медленнее, чем внутренние планеты, такие как Меркурий. Венера и Земля. Отсюда следует, что звезды на окраине спиральной галактики должны двигаться по орбитам медленнее, чем звезды, расположенные вблизи балджа. Однако Рубина и Форд получили иной результат.
Изучая галактику за галактикой, они обнаруживали, что внешние звезды движутся очень быстро, почти так же быстро, как и внутренние звезды. Как при столь малом количестве видимого вещества во внешних районах внешние звезды ухитряются мчаться так быстро и при этом не отрываться от галактики? При таких скоростях они давно должны были бы оторваться и улететь!
И астрономы пришли к выводу, что видимая материя (visible matter) — звезды и светящийся газ, которые запечатлены на фотографиях, сделанных с помощью телескопа, — составляют только малую долю общей массы спиральной галактики.
Хотя видимая масса действительно сосредоточена в центре, далеко за его пределами должно находиться огромное количество другого вещества. Каждую спиральную галактику должно окружать огромное гало темной материи. И чтобы оказывать достаточное гравитационное воздействие на звезды, находящиеся на видимых окраинах галактики, темная материя должна по массе превосходить видимую по меньшей мере в 100 раз. Другие типы галактик (эллиптических и неправильных) тоже имеют гало из темной материи.
ХОЛОДНОЙ темной материи в космосе очень много
Космологи (ученые, изучающие крупномасштабную структуру Вселенной и вопросы ее формирования) также ссылаются на темную материю в попытке объяснить главную тайну Вселенной: как из почти однородного "бульона" элементарных частиц, появившегося в результате Большого Взрыва (о котором я расскажу в главе 16), образовалась нынешняя "комковатая" структура Вселенной, состоящей из скоплений галактик и сверхскоплений?
И хотя с момента рождения Вселенной прошло примерно 15 миллиардов лет, этого времени недостаточно для того, чтобы видимая материя самостоятельно объединилась в гигант-ские космические структуры, которые мы наблюдаем сегодня.
Чтобы разрешить эту космологическую головоломку, ученые выдвинули гипотезу о том, что во Вселенной есть особый тип темной материи, холодная темная материя (cold dark matter), которая движется медленнее и группируется быстрее, чем обычная, видимая материя. В ответ на притяжение этого экзотического вещества обычная материя формирует звезды и галактики внутри мест самой плотной концентрации этой темной материи. Эта теория объясняет, почему все видимые галактики, похоже, находятся внутри гало из собственной темной материи.
Вселенная в значительной степени однородна
Астрономы верят в темную материю по еще одной "космической" причине: Вселенная, в крупном масштабе, выглядит одинаковой во всех направлениях и в целом однородна. Такое постоянство внешнего вида говорит о том, что Вселенная имеет как раз нужную плотность материи, называемую критической плотностью (critical density). По всей видимости, общего количества видимой материи, имеющегося во Вселенной, далеко недостаточно, чтобы достичь критической плотности. Этот недостаток и должна восполнять темная материя. И именно от количества темной материи зависит, будет ли Вселенная расширяться вечно или наступит поворотный момент, после которого она начнет сжиматься.
Темной материи больше 90%
Если предыдущие рассуждения верны, то по меньшей мере 90% (а может быть, даже 99%) материи во Вселенной — это темная материя. В это трудно поверить, не правда ли?
Эта огромная Вселенная, с ее мириадами звезд и галактик, — всего лишь незначительная доля материи, находящейся вокруг нас! Если использовать аналогию с морем, то галактики — это морская пена, а темная материя — безбрежный невидимый океан, в котором они плавают.
Что такое темная материя
Ну хорошо, есть много убедительных причин, заставляющих верить в существование темной материи. Но что она собой представляет?
Вообще говоря, астрономы поделили возможные виды темной материи на два класса — бар ионная темная материя и странная темная материя.
Барионная темная материя, или глыбы в космосе
Темная материя первого вида может состоять из того же материала, что и Солнце, планеты и люди. Эго привычная нам барионная материя. А барионы — это элементарные частицы, относящиеся к тому же классу, что и протоны и нейтроны, находящиеся в ядрах атомов.
Барионная темная материя (baryonic dark matter) может содержать фрагменты любого трудно различимого материала, включая пыль, астероиды, коричневых карликов (неудавшиеся звезды) или белых карликов (холодные угасшие ядра солн- цеподобных звезд). Такие глыбы материала, которые иногда называют МАСНО (Massive Compact Galo Objects — массивные компактные объекты гало) могут составлять гало, окружающие отдельные галактики.
Однако этого далеко недостаточно, чтобы объяснить формирование крупномасштабных структур в космосе.
Странная темная материя
А темная материя второго типа может содержать множество необычных и экзотических, придуманных физиками субатомных частиц, которые очень мало или совсем не похожи на барионы. К этим частицам относятся нейтрино, которые действительно существуют, а также другие частицы — аксионы, скварки и фотино, которых пока еще не открыли.
Во время Большого Взрыва — потрясающего извержения энергии, в результате которого родилась Вселенная, — возможно, было создано множество странных "темноматериальных" частиц, из которых впоследствии осталось всего несколько. Сюда относится аксион (axion), представляющий собой что-то вроде миниатюрной черной дыры; он легче электрона в 100 мил- лиардов раз. И хотя аксионы очень легки, если их будет достаточно много, то они внесут значи-тельный вклад в увеличение космической массы. Недавние эксперименты показывают, что нейтрино (частицы, которые, как раньше думали, имеют нулевую массу) на самом деле имеют массу и тоже могут вносить свой небольшой вклад в общую массу темной материи.
Другие кандидаты на роль представителей странной темной материи более тяжелые— их масса примерно в 10 раз больше массы протона, но все равно они слишком легки, если только не присутствуют в очень больших количествах. Сюда относятся также еще не открытые "партнеры" таких субатомных частиц, как кварки (quark) и фотоны (photon); их называют скварки (squark) и фотино (photino) соответственно. Собирательное название всей этой экзотики — слабо взаимодействующие массивные частицы (Weakly Interacting Massive Particle — WIMP).
/3 поисках fneumou uiattLefiuu
Физики всего мира разрабатывают чувствительные детекторы, позволяющие обнаруживать неуловимые, но неопровержимые признаки темной материи. Некоторые ученые анализируют осколки субатомных частиц, полученные в гигантских ускорителях ядерных частиц, где можно быстро воссоздать условия (температуру, энергию, плотность), которые были на заре формирования Вселенной.
Но методы поиска должны быть новаторскими. В конце концов, ученые ищут вещество, которое по определению нельзя увидеть и которое, если не считать тяготения, никак не взаимодействуют с другой материей.
Следы WIMP-частиц
Давайте подумаем, сколько усилий нужно приложить, чтобы найти WIMP. Эти слабо взаимодействующие частицы нельзя удержать ни в одном контейнере, но зато ученые могут искать доказательства того, что они проходят сквозь детектор. Когда WIMP-частица проносится мимо, она слегка нагревает один из атомов детектора, придавая ему небольшую дополнительную энергию. Но такие соударения редки. В типичном лабораторном детекторе такой случай может произойти только один раз за много дней.
К сожалению, космические лучи, энергетические частицы, которые летят к нам из космоса со всех сторон, могут имитировать действие WIMP-частиц. Поэтому, чтобы минимизировать бомбардировку космическими лучами, детектор помещают в подземный туннель. Естественное радиоактивное излучение, исходящее от стен туннеля, также может нагревать атомы, поэтому детектор экранируют — помещают в свинцовый кожух. И чтобы снизить колебания атомов, вызванные увеличением их энергии при высоких температурах, детектор охлаждают до температуры абсолютного нуля.
МАСНО делают изображение более светлым
Поскольку МАСНО— это протяженные, огромные объекты, искать их намного легче. Основной метод следует из общей теории относительности Эйнштейна. Напомню: масса искажает пространство и путь световой волны. Это означает, что объект, который волей случая оказался на одной линии зрения между Землей и далекой звездой, сфокусирует свет этой звезды, и на короткое время ее блеск увеличится. Причем чем массивнее объект — в данном случае, МАСНО, — тем ярче будет звезда во время выравнивания по одной линии.
В сущности, МАСНО ведут себя, как миниатюрные гравитационные линзы, или микролинзы, искажая и усиливая свет от звезды на заднем плане. (Более подробно о микролинзиро- вании говорилось в главе 11.)
В поисках МАСНО астрономы следили за блеском звезд из Большого Магелланова Облака, одного из ближайших соседей Млечного Пути. Чтобы достичь Земли, свет звезд от Облака должен пройти сквозь гало Млечного Пути, и находящиеся там МАСНО должны оказывать заметный эффект на этот свет.
Астрономы зарегистрировали несколько случаев, когда звезды из Большого Магелланова Облака внезапно становились ярче, а затем — снова тусклыми. Но количество МАСНО, выведенное на основе этих наблюдений, совсем невелико.
Темную материю можно нанести на карту
Гораздо шире ученые пользуются эффектом гравитационного линзирования, чтобы составить карту темной материи для целых галактик или даже скоплений галактик.
^jg^JBfe Если скопление окажется на пути световых лучей от галактики, находящейся на ІИ^Ш^А заднем плане, то оно исказит и искривит эти лучи — эффект гравитационного линзирования, создавая несколько изображений объекта заднего плана. Гало этих призрачных изображений формируется вокруг границ скопления, с точки зрения наблюдателей с Земли.
Чтобы создать некоторый рисунок наблюдаемых призрачных изображений, масса вставшего на пути света скопления должна быть распределена определенным образом. И, поскольку большую часть массы скопления составляет темная материя, этот метод позволяет выяснить, как темная материя распределена в скоплении.
Темная материя имеет значение
Все методы обнаружения и измерения темной материи являются косвенными, а попытки понять, что она собой представляет, — это непростое дело. Будучи преобладающей формой материи, темная материя оказывает глубокое влияние на прошлое, настоящее и будущее Вселенной.
чАшпижсиие/гил: п[іоніи?оположив спій п/іийілгиваюіїіся
Но есть еще один тип материи, почти такой же странной, как темная материя. Правда, некоторые считают, что она еще более странная. Ее называют антиматерией.
Существование антиматерии (antimatter) было предсказано в 1929 году английским физиком Полом Дираком, которому удалось объединить теории квантовой механики, электромагнетизма и относительности в одном изящном наборе математических уравнений. (Если вы хотите больше узнать об этих теориях, ищите соответствующие книги по физике.) Дирак обнаружил, что у каждой субатомной частицы должен существовать "зеркальный двойник" с такой же массой, но с противоположным электрическим зарядом. Примеры таких пар: протон и антипротон, электрон и антиэлектрон.
Когда частица и ее античастица сталкиваются, они уничтожают одна другую, т.е. происходит аннигиляция. Тогда электрические заряды нейтрализуются, а их массы преобразуются в чистую энергию.
Античастицы электрона и протона астрономы обнаружили в космических лучах, идущих из дальнего космоса. Антиэлектрон называется позитроном (positron), а антипротон — просто антипротоном (antiproton). Сейчас проводятся также эксперименты по поиску в косми- ческих лучах антигелия (antihelium). Физики смогли получить в лабораторных условиях античастицы и даже целые антиатомы, например антиводород. Врачи используют лучи античастиц для диагностирования и лечения рака.
Астрономы, изучавшие идущие из космоса гамма-лучи, наблюдали такую форму света, как аннигиляционное излучение. У гамма-излучения длина волны короче, а энергия — больше, чем у рентгеновского излучения. Когда электрон и его античастица, позитрон, сталкиваются, они аннигилируют, и при этом выделяются гамма-лучи известной длины волны. Было обнаружено, что эти "сигнальные" лучи идут из нескольких мест нашей галактики, включая широкий район, находящийся в направлении центра Млечного Пути. Было обнаружено также аннигиляционное излучение, имевшее место в результате нескольких очень мощных солнечных вспышек.
А если говорить о космических масштабах, то возникает вопрос: почему во Вселенной частиц намного больше, чем античастиц. В настоящее время проводятся эксперименты, чтобы выяснить, почему это так. Предположительно, в результате Большого Взрыва образовалось одинаковое количество тех и других. Но, по крайней мере, мы знаем, что на решение этой проблемы у нас есть еще миллиарды лет, до того как Вселенная (и мы вместе с ней) закончит свой путь, какая бы судьба ни была ей уготована.
В написании данной главы принимал участие Рон Ковен, освещающий вопросы астрономии и космоса в журнале Science News.
<< | >>
Источник: Стивен П. Маран. АСТРОНОМИЯ для"ЧАЙНИКОВ". 2004

Еще по теме Темная материя и антиматерия:

  1. №20 Революция и кризис физики конца 19 – начала 20 в. Ленинское определение материи. Материя как субстанция, Современные представления о формах и видах матери, Методологическое значение современного философского понимания материи для теории и практики государства и права.
  2. №21 Движение как атрибут материи. Метафизические и идеалистические трактовки взаимосвязи материи и движения. Движение и покой.
  3. №24 Основные формы материи: единство, сущность, способ существования, направленность эволюции. Социальная форма материи: происхождение, сущность, способ существования. Место и роль человека в мире. Современный антропоцентризм.
  4. 7. Материя
  5. 20.Движение как атрибут материи.
  6. 1. Диалектика материи и идеи .
  7. ФИЛОСОФСКИЙ АНАЛИЗ МАТЕРИИ И ФОРМ ЕЕ СУЩЕСТВОВАНИЯ
  8. 4.4. Неисчерпаемость материи
  9. Ленинский анализ понятий «материя» и «сознание».
  10. 5.2. Формы движения материи